English
Français (French)
Español (Spanish)
Português (Portuguese)
Italian (Italiano)
Svenska (Swedish)
Deutsch (German)
Bahasa Indonesia (Indonesian)
हिंदी (Hindi)
Pусский (Russian)
Dansk (Danish)
বাংলা (Bengali)
Nederlands (Dutch)
Eestlane (Estonian)
ελληνικά (Greek)
čeština (Czech)
Polish (Polski)
Hrvatski (Croatian)
Română (Romanian)
Magyar (Hungarian)
한국어, 조선어 (Korean)
Türkçe (Turkish)
中文 (Chinese)
Suomi (Finnish)
српски језик (Serbian)
Українська мова (Ukrainian)
norsk språk (Norwegian)
српски језик (Hebrew)
schweizerdeutsche sprache (Swiss-German)
नेपाली (Nepali)
ภาษาไทย (Siamese)
Lingua Latina (Latin)
ᱥᱟᱱᱛᱟᱞᱤ (Santali)
日本語 (Japanese)
maratimus's sitater
Simplilearn
- Q-Learning
Q-Learning is a Reinforcement learning policy which will find the next best action, given a current state. It chooses this action at random and aims to maximize the reward.