The lecture was discussing N. The lecturer firstly provided information about N, which indicates that N, N, and N are fundamental elements. Secondly, whereas unique aspects of N, N as well as N were delineated, he asserted that the significance of N and N really could not be overestimated. Finally, he deduced N from what elaborated on N.
Stages of mitosis:
1 Prophase = chromosomes form (condense) from the chromatin - the 2 pairs of centrioles move to each end of the cell - spindle fibres begin to form from the centrioles - nuclear envelope breaks down
2 Metaphase = chromosomes line up in the middle (equator) of the cell - spindle fibres from centrioles attach to chromosomes at their centromeres (converging point of a chromosomes chromatids)
3 Anaphase = centrioles pull apart chromosomes into 2 separate chromatids towards each end of the cell
4 Telophase = spindle fibres break down - nuclear envelope begins to form around each side of the now splitting cells groups of chromosomes (chromosomes which were split in half into chromatids now referred to as chromosomes again since they are separate) - cleavage furrow begins to form (division of where the original cell is splitting into 2)
Whereas principles of N attribute to N and N, the significance of N would relate to not only N but also N and N, so as not to undermine the implications of N, N, N, N, N, and N as well as N.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.
News that a colleague's baby has taken some first tentative steps usually merits little more than polite congratulations or an obligatory glance at some e-mailed images. When Nadrian ("Ned") C. Seeman and William B. Sherman of New York University recently made such an announcement, however, it earned coverage in several scientific journals. The attention had to
do with the new walker's size, which is very small for its age-or any age. A pair of legs and feet constructed from DNA strands, the walker stands just 10 nanometers tall-or roughly 1/25,000
the diameter of the period that concludes this sentence. Seeman says the walker's stroll along a DNA sidewalk is "a natural outgrowth of work that's been done before. Seeman and Sherman, who christened their pride and joy A Precisely Controlled DNA Biped Walking Device, make
clear that the walker has no practical application. And even, though he calls it "the robot, Seeman seems wary of characterizing it as a harbinger of submicroscopic automation. He does, however, see the possibility of some practical uses. "We're going to look at longer sidewalks," he says. "Eventually we might have it try to carry a load. We'll probably also look into using it for
polymer deformation-maybe using circular sidewalks and have them holding strands and twisting or braiding them." Bragging rights and applications aside, Seeman sees the walker as
one more event in an accelerating series that is transforming nanotechnology from science
fiction to science fact-developments that are making nanotechnology a very exciting field to be in right now. "I figured out this was going to be fun in 1980," Seeman says. "Now that I've been working in this area for nearly a quarter of a century, it's really starting to snowball."
Nanotechnology-engineering at the molecular level to create useful substances and devices-is no longer just the stuff of rumour and futuristic visions. It has begun to spawn viable businesses and useful products, and it's already touching our lives in many ways Nanotech products may be found in the car you drive and in the paint on your walls.
They are enhancing medical diagnostics, improving the composition of building materials and plastics, and paving the way
for radical breakthroughs in electronics and computer technology. Make no mistake: Engineering on very small scales is a very big deal The Nano Business Alliance, an industry trade
organization, predicts a global market for nanotech products and services of $1 trillion by 2010. The National Science Foundation forecasts that the market in the U.S. alone will reach $1 trillion
by 2016. Most U.S. states have established programs or agencies to encourage nanotechnology research and business development. And the federal government, characterizing nanotechnology.